
The Rubber Meets the Road: Integrating the Unified Medical Language System
Knowledge Source Server into the Computer-based Patient Record

Kevin B. Johnson, M.D., M.S.,§ and Edwin B. George, M.D., Ph.D.t

§ Division of Biomedical Information Sciences, The Johns Hopkins University School ofMedicine,
Baltimore, Maryland, and tDepartment ofNeurology, Wayne State University, Detroit, Michigan

Ongoing improvements in the content of the Unified
Medical Language System, coupled with the recent
release of the Internet-based Knowledge Source Server
(KSS), have prompted us to develop an interface between
the KSS and our computer-based patient record. We
confronted many challenges while developing a robust
interface to an Internet-based server, and in integrating
the process of codification into the workflow of
clinicians. An initial evaluation of the interface in the
clinical environment suggests that acceptable
performance is attainable. The benefits of using an
Intemet-accessible tool in a clinical information system
appear to justify the effort required.

INTRODUCTION

The National Library of Medicine's Unified Medical
Language System (UMLS) project is an extensive
international research and development effort aimed at
creating a tool that can facilitate the coding of biomedical
information, and providing a mechanism to share this
information among disparate systems.5 Through yearly
updates, UMLS has become a more robust representation
of biomedicine. Most recently, the tool has incorporated
the SNOMED International system for disease
classification-a step that is critical for UMLS to be
considered a comprehensive representation of clinical
problems and diagnoses. 26-9

These changes to the UMLS enhance its utility as a tool
for codifying patient care information. An essential
component of the medical record that can greatly benefit
from codification is the patient's problem list. This list is
formulated or updated by the physician at each clinical
encounter, and has been a challenge to codify at the point
of care.3,7" '3 The most success to date has been
demonstrated using UMLS and SNOMED. Campbell and
colleagues have suggested that a combination of
SNOMED and UMLS may offer "different and
complementary advantages" 9-an environment that is
now realized through recent enhancements to the UMLS.

In 1995, the National Library of Medicine (NLM) made
UMLS available through an Internet-based Knowledge
Source Server. 1.4 The Knowledge Source Server (KSS)
can be accessed in three ways, including access through
NLM-developed programs that allow workstations with

access to the Internet to submit command language
queries to the KSS. This program code can be used as
an Application Programming Interface (API) to allow
application programs to access the Internet-based KSS
in real time.

Providing an API to the KSS offers many benefits to
application developers and NLM staff. The API greatly
simplifies the task for developers interested in
accessing and manipulating UMLS data. In addition,
with the API, end-user applications also will be
shielded from minor changes to the server programs
that access the UMLS. Of course, use of a central
UMLS server simplifies the NLM's distribution of the
knowledge sources and might allow more effort to be
spent updating the KSS more frequently.

We are conducting a 2 phase project utilizing the KSS
to codify patient medical problems at the time of data-
entry by our physician staff. We are examining the
resulting problem lists to detennine their usefulness in
identifying specific subgroups of patients. The goal of
our first phase was to integrate the UMLS tools into our
computer-based patient record (CPR), using the KSS.
We report here our observations regarding this phase of
the project.

DESIGN CONSIDERATIONS

In developing a plan to integrate UMLS query
capability into our existing problem list entry tools, we
had four major objectives:

1. Identify any impediments to matching UMLS
terms to the physician-identified patient problems.

2. Modify our user interface to support codifying
physician-identified patient problems using the
KSS, while ensuring ease of use, and with respect
to issues identified through Objective 1.

3. Develop a robust and stable interface between our
CPR and the KSS. Identify any impediments to the
development process.

4. Ensure that the system works well on a variety of
workstation environments, as is commonly
encountered in decentralized medical institutions.

1091-8280/97/$5.00 0 1997 AMIA, Inc. 17

Impediments to Term Matching
Our CPR is designed to provide maximum flexibility for
the clinician-user trying to enter clinical information. This
system has been in place for 2 years, and is used by most
of our physician staff. To date, our staff have entered an
average of 3.3 problems for each of the 3902 patients in
the CPR. Entering a medical problem requires typing in
text describing the problem, and modifying the date of
onset if necessary.

In contrast to the system described by Zelingher, we do
not supply a text field for comments. Rather, we allow
these phrases as a part of the problem description, so that
all relevant modifiers are apparent upon inspection of the
problem list. While this design creates an intuitive data-
entry tool, it can confound the process of matching user
input to a UMLS term. We analyzed our existing problem
list, using as an example all patients with a diagnosis of
asthma. From our problem list, we identified 193 patients
with asthma and categorized the contents of their problem
text, as shown in Table 1. Within the text, there were
spelling errors, disease severity indicators (e.g., "mild"),
critical descriptive information (e.g., "cough-variant"),
other descriptive information (e.g., "diagnosed by [a
pulmonologist]"), and uncertainty indicators (e.g.,
"probable"). Inspection of the database contents also
disclosed temporal modifiers (e.g., "history of ") and
compound problems (e.g., "viral URI with otitis media").
In addition, we found 13 different terms for "asthma"
(e.g., "RADE", "status asthmaticus"), comprising 55% of
the descriptors for asthma. These aliases pose a
significant challenge to categorizing patient problems.

Category Occurrences (°)
Spelling errors 3 (2)
Disease severity indicators 40 (21)
Descriptive information 14 (7)
Diagnostic uncertainty 5 (3)
Aliases for "asthma" 106 (55)
Table 1. Analysis of problem list entries for
patients with asthma (n = 193)

User Interface Development
Our goal for the UMLS version of the problem entry
screen was to minimize the disruption caused by the
coding process, and also to leverage the training and
"cultural" change that had already occurred among our
physicians. Optimally, the system would silently match
the text string input by the clinician-user to a UMLS term,
and invisibly store the associated Unique Concept
Identifier (CUI). However, we recognized that the user
interface had to support not only the process of
submitting a text string the KSS, but also clinician-user
response to a variety of possible outcome scenarios
occurring when a term match did not occur.

Scenario #1: many possible matches, including
lexical variants. In most instances, the clinician-user
will need to choose from among a set of text strings
returned from the KSS as possible matches. These text
strings can have subtle, but sometimes clinically
significant, differences. The interface needs to provide
feedback that seduces the user into choosing the most
clinically relevant expression.

Scenario #2: no matching UMLS terms. There are a
variety of ways that a text string can fail to match a
UMLS term. In addition to the obvious failure to code
these problems, we have noticed that when we have
submitted strings with misspellings, we have had to
endure a long wait (sometimes as much as 15-30
seconds) to discover that there was no match. Our user
interface needs to facilitate the entry of problems even
when no matching UMLS term is found.

Scenario #3: multiple concepts to describe one user
problem. Problems that contain anatomic information
as well as a disease entity form one cogent example of
a common challenge we needed to overcome. For
example, two specific concepts are needed to codify the
content of the problem temporal lobe stroke. Anatomic
information is an essential component of many
diagnoses and problems; the interface needs to help the
user work through this scenario.

API Development
Our initial testing of the code provided by the NLM
disclosed an architectural approach that proved less
reliable in our environment. The NLM code relied on
synchronous network database and socket functions,
using iterative loops to avoid permanently blocking
while waiting for server responses over the network.
This approach is not robust in the non-preemptive
multitasking environment of 16-bit WindowsTm, which
remains the most predominant desktop workstation
configuration in our institution at this time. In 16-bit
Windows, synchronous WinsockTm calls monopolize
processor time resulting in unacceptable system
performance, especially when network delays are
encountered.

Workstation environment considerations
One consistency within most medical organizations is
the lack of a standard, ubiquitous configuration for
desktop workstations. In our environment, CPR users
work on 16 and 32 bit Windowsm environments, using
a range of microprocessors. A few users run Windows-
emulation on the MacintoshTm platform. Early in our
system testing, we discovered differences in memory
management between critical dynamic link libraries
(DLLs) on the various platfonns that significantly
compromised the performance of the application.

18

Therefore, as with other desktop workstation applications,
it became essential to test the UMLS interface to our CPR
in all settings every time changes were made to any part
ofthe program.

Other CPR Modifications
Clinical systems must provide very robust performance,
and "fault-tolerant" behavior is a necessity. In any
Internet-based application, the design of the system must
take into consideration a variety of unpredictable events,
including: network and hardware malfunctions, slow
network throughput, operating system errors, and remote
server downtime. Any ofthese conditions, which confront
users of the World Wide Web on a frequent basis, should
have no effect on users in busy clinical environments.
Therefore, we need to provide robust mechanisms to
recover from problems that affect system performance.

SYSTEM DESCRIPTION

The changes to our CPR resulted in a new dynamic link
library (DLL), a new user interface, and some changes to
the architecture of our CPR to support these modules.

The KSS API
We elected to encapsulate the API to the KSS in a 16-bit
WindowsTm Dynamic Link Library (DLL). This library
provides a variety of functions including those in the
original NLM code. The DLL then uses asynchronous
Winsock operations to access the KSS to post and
retrieve the query results, yielding CPU time as needed on
behalf of the calling application. The DLL uses buffers,
windows and a message queue allocated on behalf of the
calling application to handle multiple calls from different
applications or possible reentrant execution. This API
helps to isolate the production application code from
changes to the UMLS Knowledge Sources Server,
changes in the network interface, and variations in the
application platform.

There are exported functions for Metathesaurus queries,
Semantic Network queries, Specialist Lexicon queries,
and Information Sources Map queries. In addition, there
is a generic query function which takes one of these
services as a separate parameter, which provides for any
future expansion in service types. In addition, the DLL
also includes two specialized query functions,
PickListQuery and GetConcept, provided specifically for
interaction with our interface module.

Four additional management functions have been added.
A display function uses an integer flag to determine
whether the DLL should perform queries silently in the
background. There also are display attributes to support
the debugging of applications that use the DLL. A timer
function allows the calling application to set a time-out
value to determine how long a query should wait for a

response from server before returning with a partial or
no response. The DLL communicates with an
initialization file to store such items as the Internet
Protocol address of the Knowledge Sources Server, and
other parameters that affect its performance. A third
management function allows the calling application to
reinitialize the DLL from the default initialization file
or from an alternative initialization file specified by the
user. The fourth management function allows the
application calling the DLL to obtain a descriptive
string associated with error codes returned by any DLL
query function. Together, the functions exported by the
DLL provide a simple but powerful and expandable
API which isolates the calling applications from
network operations while providing the full
functionality of the KSS in all Windows.
environments.

User Interface
The user interface module has been constructed using
Visual BasicTM. The interface is shown in Figure 1. The
interface is designed to be intuitive, and to closely
approximate the functionality of our free-text problem
entry interface. A large text field receives a problem list
entry from the user. When the user presses the UMLS
SUBMIT button, the PickListQuery function searches
the KSS to generate a set of UMLS terms that are
sorted and placed in a pick list. The user may then
select an item in the pick list or select from a variety of
other actions, including expanding the pick list with
normalized strings for other related concepts. If the
clinician selects an item from one of the pick lists, the
text is replaced by the selected term and the associated
concept identifier (CUI) is stored. The clinician may
make additional changes to the text string before saving
it in the patient problem list. If the UMLS query fails to
match any terms, or if the clinician selects the "NONE
OF THE ABOVE" option on the pick list, the original
text string is stored with an identifier indicating an
unknown concept.

For the purposes of analysis, the interface creates a
record of every user interaction, including what text
strings the user entered, use of the expand, restart and
cancel buttons, total time expended and idle time
during the interaction. Idle time is when the window or
child windows of the module do not have the focus, or
when a window of the module does have the focus but
there is no keyboard activity or mouse clicks for longer
than 10 seconds. This record is stored in a separate
database for future analysis of the user interaction with
the interface.

19

Figure 1. View of UMLS Problem-entry screen.
After submitting the phrase "asthma" to the KSS,
the system displays a list of strings that match the
clinician input. The clinician chooses "asthma,
exercise induced" then presses the "STORE
PROBLEM" button to store this codified problem
into our production database.

Preprocessing User Input
Initial testing of the UMLS queries with clinician-entered
text from the CPR disclosed potential sources of poor
term matching that we could avoid by preprocessing the
text. The most common problems were caused by
modifiers placed in front of the actual problem text. The
user interface was modified to inspect the string for the
occurrence of any of these phrases before any string is
sent to the PickListQuery function. If any modifiers are
found, they are removed from the user string and then
reinserted in the user string if an exact match to the
remainder of the string is found. Otherwise, the user is
able to reinsert these words after selecting a phrase from
the pick list. Included among the modifiers that we
remove are "s/p", with a frequency of 4.5% in our list,
and "hx of', with a frequency of 6.2%.

User Feedback When No Match Is Found
Our initial testing confirmed our suspicions about the
need to handle patient problems that contain two separate
UMLS terms. In addition, we encountered other reasons
for a user string to not match a normalized string.

One common situation occurs when a one-word phrase
fails to match any UMLS term, which is usually the result
of an abbreviation or misspelling. When a single word
does not match any terms, a button labeled "TIPS" begins
to blink. If the user selects this button, the system
suggests that the user verify the spelling and remove any
abbreviations before resubmitting the text to the KSS.
The pick list also displays the initial string as the only
option. If this is selected, it will be stored, under a
concept identifier to denote that there was no matching
UMLS term.

Occasionally, a user might type in a phrase that does
not match a UMLS tenn. If there is no match, we see if
the phrase can be decomposed into more than one
unique concept, by submitting each word to the KSS
and examining the result. If the phrase matches one or
more concepts, then the user is given an option to select
one, the other, or both phrases to compose their
problem. We store up to two concepts (CUIs) for each
problem in our problem list. If neither word generates
a match, the "TIPS" button blinks to suggest using less
words to define the problem. The initial string is the
only option in the pick list.

LIMITATIONS

Our testing of the API and our user interface has been
reassuring. However we have encountered some
limitations both in our design and in the API toolset.

The current KSS does not provide a capability for
managing misspelled words. At present, we do not
perform a spell check before submitting words to the
UMLS. Verifying the spelling would greatly speed up
the process of codification.

One significant limitation to our interface is that we do
not currently display concept information about any
UMLS term. In most cases, this omission does not
result in misclassification. However, there are examples
of strings that match more than one concept, such as
"cold", and strings that match only one concept, but
have multiple meanings, such as "RAD" which is a
radiographic term that is contained within the UMLS,
but which also is an abbreviation for reactive airways
disease. We have not provided the clinician with tools
necessary to resolve either of these ambiguities in our
interface. More work will need to be done to develop a
user interface that can provide better feedback about
the concepts associated with a particular string.

USER REVIEW OF THE UMLS INTERFACE

After completing the design and implementation of our
user interface, we obtained feedback from a group of
nurses, housestaff, and attending physicians. This focus
group made the following observations:

* The interface is similar to the existing user
interface for creating problem list entries

* The TIPS button is an extremely useful and clever
tool for providing feed-back and changing user
behavior in an unobtrusive way

* UMLS found a match for most common problems
entered by members ofthe focus group

* The time from submitting a text string to obtaining
a pick list result may be too long

20

* The ability to combine two concepts into one patient
problem is not intuitive

As mentioned by our users, the latency introduced by
sending a query to the KSS to generate the pick list
remains a major limitation in the system. Often,
transmission delays due to network congestion are a
significant component of this latency. The mean response
time recorded in our research database is currently 13
seconds; however the mode is 3 seconds and the median
time is 8 seconds. Experience shows that there is a
latency component at the KSS which decreases as users
improve their strategy in submitting text for matching.
Thus, we expect this mean response time to improve as
more of our users gain experience with the UMLS-
enabled CPR.

CONCLUSIONS

We have successfully deployed a problem list entry
mechanism that integrates access to the Intemet-based
UMLS KSS during the time of data entry. There were
significant challenges in designing a user interface which
minimizes the impact of the coding process on the
efficiency of the resident and attending staff. Further
analysis is being conducted to determine the effect this
interface has had on the behavior of our staff, as well as
the effects it has on the usefulness of our patient problem
list. Despite the challenges we encountered, many of
which were previously known difficulties of employing
an encoding tool such as UMLS or previously known
difficulties in distributed computing, we are very
encouraged by the outcome of our project to date.

Acknowledgments

This project was supported by order number 467-MZ-
502170 from the National Library of Medicine. We wish
to thank Delores Allen, Alan Coltri, Gani Cortez, Lisa
Elliott, Harold Lehmann, Ronald Lesser, and Stephanie
Reel for their assistance and support.

References

1. McCray AT, Razi AM, Bangalore AK, Browne AC,
Stavri PZ. The UMLS Knowledge Source Server: A
Versatile Internet-Based Research Tool. 1996 AMIA
Annual Fall Symposium 1996: 164-168.

2. Chute CG, Cohn SP, Campbell KE, Oliver DE,
Campbell JR. The content coverage of clinical
classifications. For The Computer-Based Patient Record
Institute's Work Group on Codes & Structures. J Am Med
Inform Assoc 1996; 3:224-233.

3. Linnarsson R, Nordgren K. A shared computer-based
problem-oriented patient record for the primary care
team. Medinfo 1995; 8 Pt 2:1663

4. McCray AT, Razi A. The UMLS Knowledge
Source server. Medinfo 1995; 8 Pt 1:144-147.

5. Lindberg DA, Humphreys BL, McCray AT. The
Unified Medical Language System. Methods Inf Med
1993; 32:281-291.

6. Campbell KE, Musen MA. Representation of
clinical data using SNOMED III and conceptual
graphs. Proc Annual Symp Comput Appl Med Care
1992; 354-358.

7. Payne TH, Martin DR. How useful is the UMLS
Metathesaurus in developing a controlled vocabulary
for an automated problem list? Proc Annu Symp
Comput Appl Med Care 1993; 705-709.

8. Warren JJ, Campbell JR, Palandri MK, Stoupa RA.
Analysis of three coding schemes: can they capture
nursing care plan concepts? Proc Annu Symp Comput
Appi Med Care 1994; 962

9. Campbell JR, Payne TH. A comparison of four
schemes for codification of problem lists. Proc Annu
Symp Comput Appl Med Care 1994; 201-205.

10. Wilton R. Non-categorical problem lists in a
primary-care information system. Proc Annu Symp
Comput Appl Med Care 1991; 823-827.

11. Campbell JR, Payne TH. A comparison of four
schemes for codification of problem lists. Proc Annu
Symp Comput Appl Med Care 1994; 201-205.

12. Scherpbier HJ, Abrams RS, Roth DH, Hail JJ. A
simple approach to physician entry of patient problem
list. Proc Annu Symp Comput Appl Med Care 1994;
206-210.

13. Zelingher J, Rind DM, Caraballo E, Tuttle MS,
Olson NE, Safran C. Categorization of free-text
problem lists: an effective method of capturing clinical
data. Proc Annu Symp Comput Appl Med Care 1995;
416-420.

21

